Enriched CTCs are sorted in an automated manner with the VTX-1 then the cellenONE according to physical properties and without the need of cell labelling.

Objective: isolation and transcriptomic characterization of intact circulating tumor cells (CTCs)
Challenge: low number of CTCs compared to white blood cells (WBC) (typically accounting for ~1 cell for every 10^5 WBC).

Solution: integrated workflow for single CTC isolation and sequencing based on CTCs physical properties.

(1) CTCs are enriched from blood samples according to their size, shape, and deformability using the VTX-1 Liquid Biasy System from Vortex Biosciences

(2) Enriched CTCs are single cell isolated from remaining blood contaminants according to size and elongation criteria using the cellenONE

(3) Single CTC mRNA transcripts are then sequenced on Nextseq2000 following library preparation using the cellenCHIP 384 3 RNA-Seq Kit (3)

Evaluation of the recovery of mCTCs

Validation of the workflow using tumor cell lines MCF7, H1975, PC9 and BB49 referred as mimicking CTC (mCTC) and spiked in healthy donor blood.

For each cell line, 8 replicates containing an average of 50 fluorescently labeled cells spiked in 4ml of blood were processed using the VTX-1 liquid biopsy system (A). Four enrichment replicates were used for direct fluorescent mCTCs enumeration (white arrows) (B), and four enrichment replicates were recovered in 20 μL of PBS+BSA, loaded in the cellenONE for single cell isolation and direct enumeration using the fluorescence signal acquired by the cellenONE in the PDC (C).

High quality sequencing data are produced on mCTCs following the full workflow VTX-1 + cellenONE + cellenCHIP 384 3 RNASeq kit allowing in depth analysis of transcriptomic profile of mCTCs.

100 fluorescently labelled H1975 cells were spiked as mCTCs in 4 ml whole blood and processed using the single cell isolation workflow. Using fluorescence as a control, we determined that a total of 37 mCTC cells and 59 other cells were spotted in a cellenCHIP 384. A total of 42.5 million high quality reads were obtained following demultiplexing and analyzed using the cellenPIPE proprietary web application and an annotated sample sheet specifying “Blood cells” and “H1975” (https://cellenpipe.cellenion.com).

The contamination plot indicated that for all cells most of the sequences mapped to human genome (1) and a low contamination rate of mitochondria and ribosomal-derived sequences was observed (2). Mapping statistics showed a low rate of unmapped reads for H1975 cells (3). A mean of 17653 and 2520 genes were detected from H1975 cells and contaminant blood cells, respectively, with a mean of 991661 reads for H1975 cells and 44631 reads for contaminant blood cells (4).

Conclusion

The workflow presented here combines the VTX-1 Liquid Biasy System and the cellenONE for CTC enrichment, automated isolation and single cell 3’RNA sequencing. This workflow is based on physical parameters of the cell and does not require specific labeling of CTC prior to isolation which renders it suitable for exploratory studies. The percentage of recovery of the workflow was in average 42% of mCTCs spiked in blood samples. A total of 37 mCTCs were recovered out of 100 from spiked-in blood samples and were subsequently analyzed at the transcriptomic level using cellenCHIP 384 3RNASeq. Data produced were of very good quality, allowing easy clustering of mCTC vs. other cells. Granting access to this quality of data to scientists is opening an avenue for in depth analysis and characterization of CTCs from any cancer type.