
Application Note

Scaling Whole-Genome Sequencing to > 50,000 single cells using cellenONE®

Cellenion SASU, 60 Avenue Rockefeller, BioSerra2, 69008 Lyon, France

Abstract

A breakthrough comparative study¹ of 50,000 single-cell genomes was recently made possible by cellenONE® unique capabilities and published by a Canadian consortium of researchers from the University of British Columbia, Memorial Sloan Kettering Cancer Center and BC Cancer Research Centre (BCCRC). This remarkable work combined cellenONE® technology, coupling high-resolution imaging and high-precision single cell isolation and dispensing, and amplification-free whole-genome sequencing of single human cells. The authors provide new insights into genome heterogeneity and clonal evolution in mammalian tissues, paving the way for ultra-high-throughput single-cell sequencing approaches using cellenONE®. DLP+ has since been implemented at BCCRC for sequencing more than 400,000 genomes from patient single cells.

Materials and methods

- Isolation of single cells across various cell and tissue types, ranging 5 80 μm, thanks to cellenONE® versatility and independence from Poisson's law;
- Use of cellenONE® as a single-cell sorter & liquid dispenser for nanoliter-scale sequencing libraries, drastically reducing reagent costs and hands-on time;
- Development and open-source release of scWGS data analysis pipeline (<u>url</u>) and fully cured and annotated cellmine genome database (<u>url</u>);
- Integration of morphological measurements and images recorded by cellenONE[®]
 with genomic features;
- Visualize single nucleotide variants (SNVs), CNAs and breakpoints with greater
 resolution by merging clonal data, with shallow sequencing of a large number of cells.

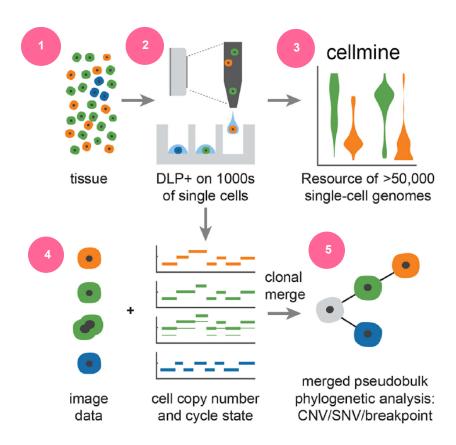
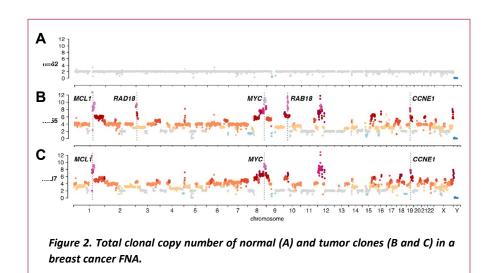


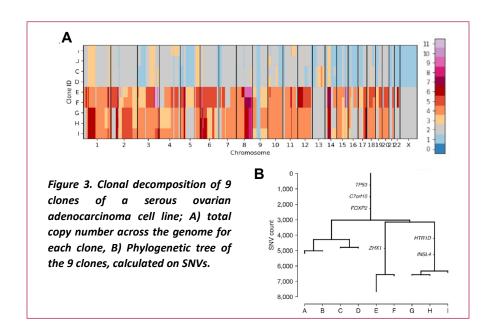
Figure 1. DPL+ workflow beginning with patient tissue samples for processing on the cellenONE® through data analysis with the DLP+ pipeline.


Results and discussion

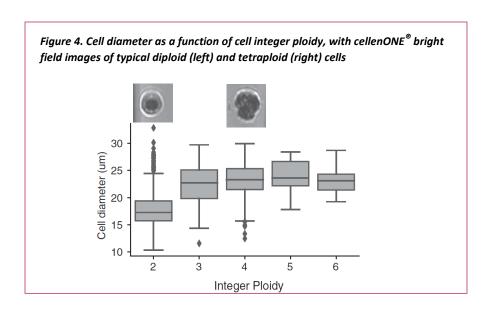
The authors previously described Direct Library Preparation (DLP) method for single-cell whole-genome sequencing (scWGS) library preparation². Removing amplification biases, DLP yielded greater coverage uniformity and better detection of copy number alterations (CNAs) than other amplification-dependent methods with the same low-depth sequencing.

Development of a new higher throughput and more affordable method, namely DLP+, was made possible by using cellenONE® as it enabled dispensing of a single cell in every well of the microwell chip. Together with a complete open access bioinformatic platform. Although only 52,000 genomes have been released publicly, BCCRC has since sequenced over 10 times that number. The DLP+ method is now being implemented at other highly renowned institutes around the world such as the Memorial Sloan Kettering Cancer Center in New York and the Francis Crick Institute in London.

Features obtained through merging of clone genomes from fine needle aspirate (FNA) of a breast cancer:


- Reconstruction of copy number clonal architecture of malignant cells (Fig. 2B and 2C) and comparison with diploid reference germline (Fig. 2A).
- · Identification of ancestral clonal and clone-specific amplifications
- Significant improvement of clonal inference through single cell demultiplexing and clone clustering.

Inference of clonal phylogenies avoiding the limitations of bulk deconvolution:


- Aggregation of cells sharing copy number profiles (Fig. 3A) for calculation of singlenucleotide resolution clonal genotypes. Inference of clone maximum likelihood phylogenetic tree, showing clade- and clone-specific SNVs (Fig. 3B).
- High congruence of phylogeny inferred from breakpoints, suggesting biological relevance of clonal decomposition inferred from copy number profiles.
- Greater efficiency of single-cell DLP+ in deconvolving copy number clones than simulated "bulk" method.

Correlation of cell morphology and genome features:

- Larger cell diameter was observed with ploidy > 2 in breast xenograft cancer cells (Fig. 4)
 and B lymphocyte cell line nuclei.
- Nucleus sizes were not always correlated with DNA replication states (i.e. cellular cycle phases).

Conclusions

The combination of an efficient molecular biology method and cellenONE® technology led to the release of an unprecedented resource of tens of thousands of high-quality single-cell genomes. Such scaling of single cell sequencing library preparation can be applied to most –omics methods, thanks to cellenONE® unique versatility. Miniaturization of existing protocols together with increasing throughput will reduce single-cell technologies costs allowing these ground-breaking approaches to transition from research to clinical settings.

References

¹Laks, McPherson, Zahn et al. Clonal decomposition and DNA replication states defined by scaled single-cell genome sequencing. Cell, 2019, vol. 179, no 5, p. 1207-1221. e22. (url)

²Zahn, Steif, Laks, Eirew, VanInsberghe, Shah, Aparicio & Hansen, Scalable whole-genome single-cell library preparation without preamplification. Nature methods, 2017, vol. 14, no 2, p. 167. (url)

Contact Us

Cellenion SASU

60 Avenue Rockefeller Bioserra 2, 69008 LYON France Tel: +33 986 48 70 70 contact@cellenion.com www.cellenion.com SCIENION GmbH

Volmerstr. 7b D-12489 Berlin Germany Tel: +49 (0)30 6392 1700 support@scienion.com www.scienion.com SCIENION US, Inc

4405 E. Baseline Road Suite #123 Phoenix, AZ. 85042 United States Tel: +1 (888) 988-3842 USsalessupport@scienion.com SCIENION (UK) Ltd

2000, Lakeside North Harbour Western Road, Portsmouth PO6 3EN United Kingdom Tel: +44 (0) 1243 88 71 65 support@scienion.com